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Abstract-Two-dimensional natural convective flow in a tilted rectangular porous material saturated with 
fluid is analyzed by solving numerically the mass, momentum and energy balance equations, using Darcy’s 
law and the Boussinesq approximation. Isothermal boundary conditions are considered, where two 
opposite walls are kept at constant but different temperatures and the other two are thermally insulated. 
The external parameters considered are the tilt angle, the aspect ratio and the Darcy-Rayleigh number. 
Three main convective modes are found: conduction, single and multiple cell convection and their features 
described in detail. Local and global Nusselt numbers are presented as functions of the external parameters. 
Multiplicity of solutions is explored for aspect ratio unity. The existence of more than one solution is 
found when the bottom wall is at a higher temperature and in a horizontal or close to horizontal position. 

1. INTRODUCTION 

THERE ARE many applications of natural convection 
in porous media. For example, we may mention 
geothermal flows, insulation problems, nuclear engin- 
eering, petroleum extraction, storage of agricultural 
products, underground diffusion of contaminants and 
porous material regenerative heat exchangers. Due to 
its importance, a considerable amount of information 
already exists. A review of experimental and theoreti- 
cal results up to 1975 is presented in an excellent 
paper by Combarnous and Bories [l]. 

In general, the flow pattern in porous media is fully 
three dimensional, but there is experimental evidence 
that under certain conditions, real flows show two- 
dimensional patterns. These are the cases we shall 
analyze in this paper. The particular conditions under 
which two-dimensional flows are observed will be 
discussed in detail below. 

Consider a two-dimensional rectangular porous 
material with two opposite walls at constant but 
different temperatures, and the other two thermally 
insulated. The material will be said to be vertical, 
horizontal or tilted, depending on the orientation 
of its isothermal walls with respect to the gravity 
acceleration vector. 

Most previous theoretical publications deal with 
horizontal [2-S] or vertical [6,7] cases. Tilted rec- 
tangles have received less attention, one of the main 

t Present address: Department of Aerospace and Mechan- 
ical Engineering, University of Notre Dame, Notre Dame, 
IN 46556, U.S.A. 

contributions being made by Vlasuk [8] (reported in 
ref. [l]) who made a numerical integration of the 
governing equations and determined the heat transfer 
as a function of the tilt angle. An important result 
presented by him is that the tilt angle for maximum 
heat transfer for aspect ratio unity and Darcy- 
Rayleigh numbers in the 100-350 range, is approxi- 
mately SO”. This effect also presents itself in a fluid 
filled cavity [9, lo], although the angle of maximum 
heat transfer is not necessarily the same. Hoist and 
Aziz [l l] made an investigation on the heat transfer 
of a tilted square porous material considering temp- 
erature-dependent physical properties. Weber [ 123 
analyzed the problem of thermal convection in an 
infinite tilted porous layer using a perturbation tech- 
nique. A Galerkin expansion was used by Walch and 
Dulieu [ 133 for a slightly inclined rectangular box. A 
correlation between the Nusselt number and the 
Darcy-Rayleigh number, the aspect ratio and the 
tilt angle was given. They have also identified the 
qualitative nature of the steady-state solutions as a 
cusp catastrophe [14]. Bifurcation and instability 
phenomena in porous material have received less 
attention, the first major work in this area being due 
to Lapwood [15], who found that the conductive 
solution for an infinite bottom-heated porous layer 
becomes unstable at R = 4n2. Beck [16] extended 
these results to finite aspect ratios. Multiplicity of 
solutions in a tilted porous cavity has been studied 
numerically by Walch and Dulieu [14] and analyti- 
cally by Caltagirone and Bories [17] who determined 
their stability. 
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NOMENCLATURE 

D aspect ratio 

g acceleration due to gravity 

g local component of gravity in stream 
tube direction 

H height of the porous material 
k equivalent thermal diffusivity 
K permeability of porous medium 
L total length of stream tube 

Na(x) local Nusselt number - 
Nu global Nusselt number 

P’ pressure 
R Darcy-Rayleigh number 
T temperature 
TA, Th temperature of hot and cold iso- 

thermal boundaries, respectively 
u, u velocity components in the x’- and Y’- 

directions, respectively 
u non-dimensional average fluid speed 

W width of the porous material 
W velocity in the stream tube direction 

x*Y spatial coordinates. 

Greek symbols 

; 

tilt angle 
coefficient of volumetric expansion 

? spatial coordinate in the stream tube 
direction 

P dynamic viscosity of the saturating 
fluid 

$ 
fluid density 
stream function 

ylll variable defined in equation (14). 

Indices 
dimensional variables 

0 reference value. 

Experimental observations made by Combarnous 
and Bories [l] and Bories and Combarnous [ 181 in 
a saturated porous material with dimensions 
66.3 x 46.3 x 5cm indicate that a single two-dimen- 
sional cell with a horizontal axis is present for 
Rcos a c: 4n2, where a is the tilt angle and R the 
Darcy-Rayleigh number. Larger Darcy-Rayleigh 
numbers, however, present a variety of flow modes. 
These authors report hexagonal cells similar to the 
Btnard-Rayleigh cells for a < 15” and 40 < R < 250. 
Multiple longitudinal cells with axes parallel to the 
top and bottom walls, and therefore tilted with respect 
to the horizontal, were found for 4n2 -Z R cos a -c 240. 
The frontiers separating the different modes are tran- 
sition regions rather than sharply defined boundaries. 
A rectangular box with aspect ratio of approximately 
three was used by Kaneko et al. [19] to observe the 
convective flow in a tilted porous medium with 
isothermal boundary conditions. They reported mul- 
tiple transversal (presumably bidimensional) cells with 
horizontal axes for a < 15”. A single bidimensional 
cell appeared for a > 15”. 

The objective of the present work is to analyze 
numerically the behavior of natural convection flows 
in rectangular tilted porous materials with two-dimen- 
sional flow patterns, with special emphasis on the 
transition between the different cellular patterns. The 
study is also concerned with multiple steady-state 
solutions in the rectangular porous material. Recently, 
it has been demonstrated that some one-dimensional 
natural convective flows may also show two steady- 
state solutions in opposite directions. The stability of 
such solutions depends on the particular operating 
conditions. See, for instance, Damerell and Schoenhals 
[20] or Sen et al. [21]. This multiplicity is not merely 

FIG. 1. The tilted porous material. 

theoretical as there is experimental evidence for two 
different stably convective flows under identical heat- 
ing and geometrical conditions [22]. Multiple sol- 
utions for natural convective flows in rectangular 
bidimensional fluid filled cavities have been discussed 
among others by Daniels [23] and Hall and Walton 
[24,25]. 

2. GOVERNING EQUATIONS AND 
NUMERICAL METHOD 

Consider the flow of a Newtonian fluid inside a 
rectangular porous material as depicted in Fig. 1. 
Here Th and T& represent the temperature of the hot 
and cold walls, respectively, while the other two walls 
are adiabatic. The material is tilted at an angle a with 
respect to the horizontal plane, and is H units high 
and W units wide. The fluid and the porous medium 
are treated as a homogeneous, isotropic system with 
an equivalent heat conductivity. 

We will analyze the steady state, using Darcy’s law 
along with the Boussinesq approximation. The density 
is taken to be a linear function of the temperature. 
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The non-dimensional form of the governing equations 
in terms of the stream function Y and temperature T 
are 

and 

ayaz- ayaz- 1 a2T d2T -----_=--+- 
ay ax ax aY 0’ ax2 ay2 

(2) 

where the non-dimensional variables are defined by 

x = X’fW, Y = Y’IH, 

‘4’ = Y’H/kW, T= T’-T;. 
G- 

(3) 

All variables have their usual meanings and are 
defined in the Nomenclature. The governing par- 
ameters are the Darcy-Rayleigh number 

R = Q/VT;, - Tc)Hp,lk~ (4) 

the aspect ratio 

D = W/H (5) 

and the tilt angle a. 
The non-dimensional boundary conditions are 

Y=O on the boundaries 
T=l fory=OandO<x<l 

T=O fory= landO<xsl (6) 

aT 0 dx= forx=O,landO<yc 1. 

The non-dimensional heat-transfer coefficient is 
given by the Nusselt number defined as: 

(a) local 

No = aTlaY; (7) 

(b) global 

Nu= 
s 

‘dTdx 
Oay . 

(8) 

The solution to the system of equations (1) and (2) 
with boundary conditions (6) was obtained using a 
standard finite difference numerical method. The 
first-order derivatives were approximated by central 
differences and second-order approximations were 
used for the derivatives in the boundary conditions. 
The temperature field was first found by solving 
equation (2) using a false transient explicit method 
and assuming known initial Y and T fields. Once the 
temperature had been determined, equation (1) was 
solved using the overrelaxation iterative scheme used 
by Wilkes and Churchill [26]. The Y values so 
obtained were used in equation (2) together with the 
more recently calculated temperature field to obtain 
new values for the temperature. The iterative cycle 
was repeated until a convergence criterion of 0.1% was 

satisfied. The difference between the global Nusselt 
numbers at the hot and cold walls was within 0.1%. 

The convergence of the numerical solution with 
respect to the mesh fineness is shown in Tables 1 and 
2. Numerical results are given in Table 1 for D = 1, 
R = 10 and 100 and for tilt angles of o”, 45” and 90”. 
It is seen from this table that the larger the Darcy- 
Rayleigh number, the finer the mesh required. The 
& difference between the 30 x 30 and 40 x 40 
meshes is at most 2.5% (for a = 90”). The global 
Nusselt number for a = 90” and R = 100 obtained 
with the finer mesh is 7% smaller than that reported 
by Prasad and Kulacki [27] and Walker and Homsy 
[28]. The difference is smaller for smaller R. Balancing 
both precision and computational expense, the results 
obtained with the 30 x 30 mesh reported in this paper 
for the case D = 1 are considered satisfactory. The 
influence of the mesh on the solution for D > 1 is 
given in Table 2 for a = 0” and R = 100. We explored 
the effect of the increase of the number of mesh points 
in the x- and y-directions. The results indicate that 
equidistant meshes with 20 x 1OD points give accur- 
ate enough results with reasonable computer process- 
ing time. 

3. CONVECTIVE MODES 

An obvious characteristic of convection in the 
porous material is the appearance of single or multiple 
cell flows. It must be remarked that whenever we refer 
to multiple cells, we mean multiple two-dimensional 
transverse cells and not the three-dimensional longi- 
tudinal cells described by Bories and Combarnous 
[ 183. For future reference, it is convenient to introduce 
a formal definition of a convection cell. The physical 
notion of a cell is associated with an identifiable body 
of fluid rotating in the same sense. Therefore, it has 
to be bounded by a closed streamline within which 
the vorticity is of the same sign. 

Depending on the aspect ratio (D), the tilt angle 
(a) and the Darcy-Rayleigh number (R), single or 
multiple cell convection was found. For D = 1 and in 
the ranges 0” I a I 180” and R < 100 the single cell 
mode was obtained. An example of this flow is given 
in Fig. 2 where the streamlines and isotherms are 
shown for a = 30” and R = 100. The features pre- 
sented are qualitatively similar to those found in a 
fluid filled cavity as discussed by Ozoe et al. [lo]. 
The stream function shows a single extremum value 
whose magnitude becomes larger as R increases, 
indicating a more vigorous motion, as expected. As 
a function of the tilt angle, the Y extremum value 
presents a maximum around 50”. This effect is dis- 
cussed in detail in Section 4. 

Geometries with aspect ratios greater than unity 
present a greater variety of convective modes. In 
particular, Fig. 3 shows the regions in the a,R space 
where the flow presents single or multiple cell modes 
for D = 3. Single cell convection takes place for 
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Table 1. Convergence of the numerical solution as a function of the mesh size 
for D = 1. & is the global Nusselt number and Y, the extremum value of the 

stream function 

Rayleigh Mesh 
number points 

(R) 

10 x 10 
10 20 x 20 

30 x 30 

20 x 20 
100 30 x 30 

40X40 

a = 0” a = 45” 
Nu Y, Nu Y, 

1.000 o.OOOo 1.031 0.5976 
1.000 0.0000 1.043 0.6136 
1.000 0.0000 1.048 0.6187 

2.391 5.128 3.316 6.470 
2.475 5.211 3.481 6.529 
2.517 2.252 3.564 6.552 

a = 90 
73;; Y, 

1.044 0.7182 
1.059 0.7198 
1.065 0.7196 

2.662 4.718 
2.801 4.727 
2.873 4.728 

Table 2. Convergence of the numerical solution as a function 
of the mesh size for a = 0” and R = 100. G is the global 
Nusselt number and Y, the maximum value of the stream 

function 

Mesh 
D points FG ylll 

10 x 20 2.275 1.748 
2 10 x 40 2.442 1.950 

20 x 40 2.464 1.941 

10 x 40 2.515 1.215 
4 10 x 80 2.582 1.265 

20 x 40 2.539 1.205 

10 x 40 2.401 0.637 
8 10 x 80 2.504 0.563 

20 x 80 2.530 0.559 

0 < R < 200 and tilt angles larger than approximately 
50”. Two different flow patterns appear for smaller 
tilt angles, namely, one main cell with secondary 
cells developing within, and three cells circulating 
in alternate directions. For the parameter ranges 
explored, more than three cells were never found. The 
hatched region in Fig. 3 has &% c 1.1 and is character- 
ized by very small flow velocity, and conduction 
dominated heat transfer. Along the broken line, the 
interface between the different cellular regions is 
difficult to determine, being highly sensitive to the 
external parameters. Typical isotherms and stream- 
lines for R = 100 and a = W, 25” and lo” are shown 
in Figs. 4-6. The first example presents a single cell 
where all the fluid inside the porous material circulates 
in the same sense and the stream function has only 
one extremum value. As the tilt angle is reduced, the 
Y extremum point splits in two. Parcels of rotating 
fluid remain isolated in the vicinity of the local 
extremum points, but still the whole body of fluid 
rotates in the same sense, driven by the main cell. 
This is a typical one main cell plus secondary cell 
convection mode. As the tilt angle is further reduced 
to lo”, three clearly identifiable isolated regions or 
cells develop with alternate directions of rotation. 
Three local extremum values for Y are found in this 
case. 

The map of the convective modes for a two- 
dimensional porous material with an aspect ratio of 
ten is given in Fig. 7. Essentially, it presents transition 
characteristics similar to those found for D = 3, the 

main difference being that one, seven and nine cell 
convection can now be found, the larger number 
of cells corresponding to smaller tilt angles. The 
isotherms and stream function fields are shown for 
three typical cases in Figs. 8-10. The evolution from 
single cell convection at large tilt angles to multiple 
cells at small tilt angles is similar to that found in the 
D = 3 case. 

Bories and Combarnous [18] reported an exper- 
imentally found a,R map for a three-dimensional box 
in which they show single two-dimensional transverse 
cells for R cos a < 4~ and a variety of three-dimen- 
sional patterns for the R cos a > 4~’ region. In par- 
ticular, for tilt angles smaller than 15” they encoun- 
tered three-dimensional hexagonal cells. The 
numerical results presented here closely predict the 
appearance of the single two-dimensional cell in 
the region R cos a < 4n2 and is obviously unable to 
predict the three-dimensional patterns. 

4. PHYSICAL DESCRIPTION 

We can visualize the convection pattern in a cell 
as being composed of a number of variable-area 
closed stream tubes. Heat is transferred in and out 
of these tubes through their imaginary walls by 
conduction. Also, heat is transferred along the direc- 
tion of the axis mainly by convection. Near the hot 
wall, the heat balance in the tube is positive, i.e. more 
heat enters the tube through the walls than leaves it. 
The net energy gain is conveyed towards the cooler 
wall where a net amount of heat is withdrawn from 
the tube through its walls, completing in this manner 
the heat transfer. Therefore, the heat transferred 
globally through the porous material depends on two 
effects: first, the heat conducted through the imaginary 
walls of the tube and second, convection of the 
fluid moving within. Although the two effects are 
necessarily coupled, for purposes of clarity we will 
discuss them separately. The heat conducted through 
the tube walls depends mainly on the effective heat 
conductivity of the working fluid-porous medium 
system, and the temperature gradient in the direction 
perpendicular to the walls of the stream tubes. Taking 
the single cell in Fig. 2 as an example, we find that 
heat conduction is more effective downstream of the 
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FIG. 2. (a) Streamlines and (b) isotherms for D = 1, R = 100, c* = 30”. 

upper- and lower-most corners where the temperature 
gradients are larger. This effect is due to the defor- 
mation of the isothermal lines from their conductive 
pattern provoked by the motion of the fluid. 

In order to gain insight into the physical nature of 
the flow, we consider a single stream tube. The driving 
force of the fluid motion inside the stream tube, and 
indeed in the whole of the cavity (since the choice of 
the stream tube is arbitrary), comes from the product 
of the density and the local component of the gravity 
acceleration vector in the direction of the stream 
tube. This is easily shown by considering the Darcy 
equation describing the momentum balance written 
for a coordinate q’ that runs along the centerline of 
the stream tube, i.e. 

(9) 

where w’ is the velocity in the direction of the 
coordinate q’ and g is the local component of the 
gravity acceleration vector in the q’-direction. Upon 
making the approximation that the stream tube has 

745 

constant cross section, the mass balance indicates that 
w’ is constant along the stream tube. Integrating along 
the stream tube loop, the pressure term is eliminated 
and we obtain 

where L is the total length of the tube. In terms of 
the temperature, this expression becomes 

where we have used the fact that 

L r ida’ = 0. 
Jo 

The non-dimensiona form of the above expression is 

w = R 
5 
' WMrl)drl (12) 
0 

where 6 = g/g, q = $fL and w = w/H/k. The Darcy- 
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FIG. 3. Map of qualitative behavior for D = 3. 0 Single cell; Q one cell plus secondary cells; (?> multiple 
CellS. 

(b) 

FIG. 4. (a) Streamlines and (b) isotherms for D = 3, R = 100, 
a = 40”. 

Rayleigh number comes out naturally as the 
coefficient of the buoyancy driving force along the 
stream tube. Due to the constant area stream tube 
approximation, the left- and right-hand sides of equ- 

(bl 

FIG. 5. (a) Streamlines and(b) isotherms for D = 3, R = 100, 
a = 25”. 

ation (12) were found to agree only within 10% for 
D = 1, R = 100, a = 30”. 

For unit aspect ratio, and fixed Darcy-Rayleigh 
number the motion of the fluid inside the porous 
material is most vigorous for tilt angles of approxi- 
mately W, the precise value being dependent on R. 
This feature can be clearly seen From Fig. 11 where 
the average fluid speed U over the area A of the 
rectangular porous material, defined as 

ii = (u2 + u’)dA 
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FIG. 6. (a) Streamlines and(b) isotherms for D = 3, R = 100, 
OT = lo”. 
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is plotted as a function of the tilt angle for different 
values of the Darcy-Rayleigh number. As shown in 
equation (12), the driving force is the result of the 
combined effects of the temperature difference and 
the local component of the gravity acceleration vector; 
therefore, the appearance of the maximum in the 
average speed as a function of the tilt angle can be 
qualitatively understood as follows: we consider the 
horizontal case and assume that the flow is in the 
counterclockwise direction. For the sake of argument, 
choose a particular stream tube close to the bound- 
aries, the right-hand side branch of which is hotter 
(and therefore less dense) than the average, after 
picking up heat at the lower boundary. Likewise, the 
branch on the left-hand side is cooler than the average. 
In the two vertical branches, the gravity vector is 

0” IO” 20" 300 4w 6W 700 600 

a 

FIG. 7. Map of qualitative behavior for D = 10. 0 One cell; a one cell plus secondary cells; 0 multiple 
cells. 
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FIG. 8. (a) Streamlines and (b) isotherms for D = 10, R = 100, a = 55”. 
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T= 0 

T=I lb) 

FIG. 9. (a) Streamlines and (b) isotherms for D = 10, R = 100, a = 40 

T=I i bl 

FIG. 10. (a) Streamlines and (b) isotherms for D = 10, R = 100, a = 0”. 
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-5 

-4 

0” 45” 90” 

FIG. 11. Fluid average speed ti and % as functions of tilt angle a, D = 1. 

aligned with the stream tube and the density imbal- 
ance helps the circulation of the fluid inside the cavity 
as indicated by a contribution to the integral in 
equation (12). However, no matter what the tempera- 
ture of the fluid inside the horizontal branches is, 
their density difference does not contribute to the 
integral in equation (12) since 6 is zero in these 
branches. A similar situation is found for the vertical 
case. However, at an intermediate inclination the 
temperature differences in the fluid in all four branches 
of the stream tube contribute to the driving force 
since in each of them the component of the gravity 
vector is nonzero. Thus the maximum average speed 

a 

can be expected at an intermediate a, between the 
horizontal and vertical extremes. This result reflects 
itself in the heat transfer results also as discussed in 
the next section. 

5. HEAT TRANSFER RESULTS 

The regions on the wall that participate more 
effectively in the heat transfer process can be identified 
using the local Nusselt number. This is shown for the 
lower wall in Figs. 12 and 13 for R = 100 and tilt 
angles of lo” and 60”, respectively. It is clearly seen 
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FIG. 12. Spatial variation of the local Nusselt number for R = l()Q, n = 100. 
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FIG. 13. Spatial variation of the local Nusselt number for R = 10% a = 60”. 
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FIG. 14. Variation of global Nusselt numbers with a for: (a) D = 1, (b)D = 3, (c)D = 10. 

that for the single cell mode, which corresponds to 
the D = 1 curve shown in Fig. 12 and all curves 
shown in Fig. 13, most of the heat is transferred 
at the corners of the material. When multiple cell 
convection is present, as in D = 3 and 10 in Fig. 12, 
most of the heat is transferred at several localized 
spots at the walls. These correspond to the boundaries 
between the cells where the flow is directly from the 
hot to the cold wall. Flow in the opposite direction 
leads to a minimum point in the Nu(x) curve. It is 
found that the presence of multiple cells has the 
overall effect of increasing the heat transfer. - 

The global Nusselt number (Nu) for aspect ratios 

Table 3. Transition angle from multiple to single cell convec- 
tion oatterns 

Aspect Transition 
ratio R anale 

2 100 10 
Caltagirone and Bories [17] 4 100 29 

8 100 32 

3 60 25 
Present work 3 100 25 

10 60 25 
10 100 30 

of one, three and ten and for several Darcy-Rayleigh of the arguments given for D = 1 since a single cell is 
numbers are shown in Figs. 14(a)-(c), respectively, as present. The first maximum is, however, characteristic 
functions of the tilt angle. The curves for unit aspect of the D # 1 geometry and is due to the multiple cell 
ratio present a single maximum at a tilt angle of convection. Similar results have been obtained in a 
approximately 50”. This coincides qualitatively with recent paper by Caltagirone and Bories [17]. Their 
the fact that the most vigorous convective flow is angles for transition to single cell motion are shown 
developed at approximately this inclination. The in Table 3, together with those found here. The 
global Nusselt number is 15% smaller than that found transition for R = 100 is much more sudden and 
by Vlasuk [8] (for R = 100). The curves for aspect clearly identifiable than that for R = 60. This is due 
ratios 3 and 10 (Figs. 14(b) and (c), respectively) feature to the fact that, as can be seen from Fig. 3, the one 
two local maxima, the first one for tilt angles smaller main cell plus secondary cell transition zone between 
than 35”, and a second one for larger inclinations. multiple and single cell motions is much smaller for 
The appearance of the latter is explained in the light larger R. 

751 
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I 2 3 4 5 6T6910 20 30 40 30 60 60 IO0 

FIG. 15. Global Nusselt number as a function of Rcosa for D = 3. Continuous line is from ref. 1191. 
A,a=lO”, R=30; &a=20”, R=30; &a=30”, R=30; O,a=lO”, R=60; O,a=20”, R=60; 
~,a=30”,R=60;~,a=l0”,R=l00;~,a=20”,R=l00;~,a=30”,R=l00;V,a=l0”,R=l50; 

V,a = 20”, R = 150; v,a = 30”, R = 150. 

In general, the curves in Fig. 14 are difficult to 
correlate into a sufficiently simple expression of the - 
form Nu(D, R, u) as has been done for vertical geometr- 
ies [27]. The following simplified version has also 
been used 

-- 
Nu = Nu(D, R cos a). (13) 

Such correlations may be valid over a range where 
the cellular convection pattern does not change, and 
should not be extrapolated beyond the transition 
boundaries. 

Experimental data for global heat transfer in a 
box with isothermal walls with an aspect ratio of 
approximately 3 were reported by Kaneko et al. [ 193. 
They suggested the relation & = O.O82(R cos CL)‘,‘~ 
and emphasized that it had been obtained for tilt 
angles in the range 10” < tl < 30”. These experimental 
results are shown as a continuous line in Fig. 15 
which is compared with the values obtained here. It 
is clearly seen that the results are in good agreement 
whenever a multiple cell mode (or one cell with 
large secondary cells) is present, as for R I 100 and 
R = 150, a = 20”. However, for larger tilt angles, 
when the single cell mode is present, the numerical 
result is approximately 30% smaller than the rec- 
ommended empirical relation. On physical grounds 
it seems reasonable that single cell heat transfer, 
having less heat transfer channels, be smaller than 
that due to multiple cells if either structure could exist 
under identical conditions. Thus the two qualitatively 
different behaviors cannot be uniquely correlated. 
Although it is not explicitly stated in ref. [19], it 
appears that the experimental results were obtained 
for multiple cell convection. 

Heat transfer results similar to those presented in 
this paper were recently published by Caltagirone 
and Bories [17]. We used our numerical method to 
obtain results in the conditions given in ref. [ 173. The 
geometries D = 2,4 and 8 were analyzed for R = 100. 
Global Nusselt numbers and the number of cells are 

Table 4. Global Nusselt number and number of cells for 
R=lOO 

This work Caltagirone and 
Bories [ 173 

Number Number Difference in 
D a of cells Nu of cells Nu ivu (%) 

0 3 2.46 3 2.65 I 
2 5 ; 2.53 3 2.64 4 

10 2.55 3 2.60 2 
15 1 2.39 1 2.44 2 

0 5 2.54 5 2.61 5 
10 5 2.60 5 2.69 3 

4 20 3 2.51 3 2.62 2 
30 3 2.60 1 2.51 1 
40 1 2.00 1 2.02 1 

0 11 2.53 11 2.64 4 
10 11 2.53 9 2.70 6 
20 9 2.58 9 2.61 3 

8 30 5 2.35 5 2.45 4 
40 1 + set 1.50 - 1.52 1 
50 1 + set 1.57 - 1.57 0 

given in Table 4. The agreement is satisfactory, since 
the difference is, except in two cases, less than 5%. 

6. MULTIPLE SOLUTIONS FOR A 
SQUARE MATERIAL 

The existence of multiple steady-state solutions, in 
the present bidimensional analysis can be easily 
demonstrated for the horizontal case. Consider the 
governing equations, equations (1) and (2), and the 
boundary conditions, equation (6), for D = 1 and 
o! = 0”. 

Assume that Y(x, y) and T(x, y) are solutions to 
the system, then -Y(x, y) and T( -x, y) are also. 
Moreover, it should be remarked that the conductive 
solution, namely ‘Y(x, y) = 0 and T = 1 - y, always 
satisfies the governing equations and boundary con- 
ditions for o! = 0”. Therefore, for the horizontal case, 
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a 

FIG. 16. Y’, as a function of a for D = 1. 

there can be either one or three solutions depending 
on whether R < 4x2 or R > 4x2. 

The multiplicity of steady-state solutions also exists 
for slightly inclined porous materials, as has been 
analytically investigated by Walch and Dulieu 
[13,14]. Here, this kind of behavior is investigated 
numerically. In order to characterize the flow we shall 
use the variable Y, defined by 

Y, = _+maxlY(x,y)l (14) 

where the positive and negative signs are taken for 
counterclockwise and clockwise circulation, respec- 
tively. 

Figure 16 shows Y, as a function of the tilt angle 
as obtained from the numerical solution for different 
Darcy-Rayleigh numbers. Curves for R -e 4x2 present 
only one solution for any a. In contrast, the curves 
for R > 41~’ show a region around a = 0” where three 
solutions are possible. 

Two different solutions could be obtained with the 
numerical algorithm for R > 4x2 by using different 
initial stream function and temperature fields for the 
iterations. Using Y = T = 0 as the initial values for 
the entire region of integration, we get the counter- 
clockwise solutions for positive tilt angles and clock- 
wise solutions for negative tilt angles. These can be. 
referred to as the ‘natural’ solutions as defined by 
Walch and Dulieu [14], who described this phenom- 
enon using a small tilt angle approximation. Using 
these results as starting values, two counter rotating 
solutions were obtained for zero tilt angle. Repeating 

the procedure, we could go to counterclockwise 
(clockwise) rotating solutions for small negative (posi- 
tive) tilt angles. These are the ‘antinatural’ solutions. 
Thus, there is an interval in the vicinity of a = 0” for 
which multiple solutions could be found. The size of 
the interval depends on the Darcy-Rayleigh number, 
increasing with R. For example, for R = 60 multiple 
solutions can be obtained in the range -4” < a < 4”, 
while for R = 100 the range increases to 
-10” < a < lo”. Results found with the numerical 
procedure are shown with continuous lines in Fig. 
16. The curves are completed with broken lines, 
considering the fact that the origin is always a solution. 
It seems that the solutions shown by broken lines, 
are unstable [29], but this point cannot be further 
explored with the methods described in this paper. 
The first and third quadrants represent the natural 
solutions and the other two the antinatural circu- 
lation. The streamlines and isotherms for the counter- 
clockwise (natural) and clockwise (antinatural) circu- 
lation for D = 1, R = 100 and a = So, are shown in 
Fig. 17. In Fig. 17(a), the fluid moves upwards near 
the hot wall and downwards near the cold wall. In 
Fig. 17(b), the fluid descends near the hot wall and 
ascends near the cold wall. Close scrutiny of the 
temperature field shows that, in both cases, the 
ascending stream is hotter than the descending one, 
providing the driving force in the respective direction 
of motion. This explains the existence of two counter 
rotating solutions, even though at first sight, the 
second solution might seem to be unrealistic. Refer- 
ence can be made to a study of one-dimensional 
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FIG. 17. Streamlines and isotherms for (a) counterclockwise and (b) clockwise circulation for 5 = 1, 
R = 100. a = 5”. 

thermosyphon models (see ref. [30]) where a similar 
situation is encountered. It is to be emphasized that 
the natural convection equations considered as an 
initial value problem have a unique solution. How- 
ever, different initial conditions can lead to different 
steady-state flows. A horizontal porous material with 
a clockwise convection cell can be carefully tilted a 
small positive an@e, with the cell maintaining the 
same flow direction. This is the antinatural motion. 
If heating were applied from rest for this same positive 
angle, natural counterclockwise motion would have 
resulted. The adjective natural is thus used to describe 
the flow which would develop on starting from 
rest conditions. This is the solution that is usually 
investigated. 

7. CONCLUSIONS AND DISCUSSION 

The phenomenon of natural convection in a two- 
Dimensions porous material saturated with fluid was 

studied by means of a numerical method. Conduction, 
single or multiple cell convection take place depending 
on the aspect ratio, Darcy-Rayleigh number and tilt 
angle. For zero tilt angle and R < 4n2, the heat 

transfer is purely conductive, while for R > 4n2 the 
main heat transfer mode is convection. The a = 0” 
mathematical model is structurally unstable. In other 
words, for a f 0” behavior of the natural convection 
system is completely different, however small a might 
be. When the porous material is tilted, both conduc- 
tion and convection modes are present for all Darcy- 
Rayleigh numbers. 

Flow in square material was found to feature one 
cell, regardless of the tilt angle in the Darcy-Rayleigh 
number range explored. The maximum average ve!- 
ocity and the maximum global heat transfer take 
place at approximately the same tilt angle, indicating 
the importance of the fluid motion on the heat 
transfer. 

When the aspect ratio is larger than unity, single 
or multiple cell convection can take place. Multiple 
cell convection augments the heat transferred through 
the porous material since the main mechanism of heat 
exchange is due to the motion of the fluid in a 
direction perpendicular to the isothermal walls. In 
the single cell mode this occurs only in regions close 
to the isothermal walls, while in the multiple cell 
convection, the fluid in the regions between adjacent 
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cells also moves in the direction perpendicular to the 
isothermal walls. 

At tilt angles close to zero the preferred mode of 
circulation is multiple cell while at greater tilt angles, 
the preferred mode is single cell. The change occurs 
at approximately 30” for D = 3 and 10. This charac- 
teristic has also been reported for fluid filled cavities 
[lo]. It was found that the maximum number of cells 
in the D = 8 case was eleven while for D = 10 nine 
cells appeared, for CL = 0”. We analyzed this point in 
detail, and used various meshes to try to clarify 
whether the number of cells depended on the mesh 
fineness. Meshes of 20 x 60, 20 x 80 and 20 x 100 
were used and in no case more than nine were 
encountered. 

The existence of the multiplicity of solutions has 
also been demonstrated. It was found that for a given 
Darcy-Rayleigh number, and a small (positive or 
negative) tilt angle and unit aspect ratio, there exist 
two steady-state solutions. In the particular case of 
a: = 0” and R > 47r2 there are three solutions, one 
unstable conductive and two convective with opposite 
circulations. It is expected that there are also three 
solutions for some tilt angles different from zero, the 
third one being unstable and therefore impossible to 
obtain with a numerical method. The manifold for 
the solutions in the Y,, R, tl space is hence a cusp 
catastrophe. 

Although no exploration was made into the multi- 
plicity of solutions for D # 1, the variety of convective 
patterns obtained suggests a far more complete bifur- 
cation set, where not only the conduction to convec- 
tion transition is possible but also the single to 
multiple cell convection, and multiple to multiple cell 
convection. For a fixed D, some properties can be 
inferred. For instance, the interfaces between different 
convective cell structures in the tl, R space for D = 3 
and 10 (Figs. 3 and 7) resemble a projection of the 
cusped catastrophe set. 

Application of Thorn’s classification scheme for 
elementary catastrophes [31] to natural convection 
is not immediate, since infinite dimensional non- 
gradient type equations are involved. However, the 
present study clearly shows that some of its results 
may be used. A full study of these phenomena would 
involve the description of a manifold for the solutions 
in at least a tetradimensional space Y,, R, a, D. Such 
a manifold would probably be identified with a higher 
order catastrophe. 
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ETUDE NUMERIQUE DE LA CONVECTION NATURELLE DANS UN MATERIAU 
POREUX RECTANGULAIRE ET INCLINE 

R&urn&La convection naturelle bidimensionnelle dans un matiiriau poreux rectangulaire, inclink est 
analyske en risolvant numkriquement les tquations des bilans de masse, de quantitk de mouvement, 
d’tnergie. en utilisant la loi de Darcy et I’approximation de Boussinesq. Les conditions aux limites 
considtrtes correspondent i deux parois opposies maintenues d deux temptratures uniformes mais diff- 
trentes et les deux autres &tant thermiquement isolies. Les parametres externes consid&% sont l’angle 
d’inclinaison. le rapport de forme et le nombre de Darcy-Rayleigh. On trouve trois modes principaux de 
convection : la conduction, la convection avec un ou plusieurs cellules et leur description est don&e en 
d&ail. Les nombres de Nusselt locaux et globaux sont present&s en fonction des paramktres externes. La 
multiplicitk des solutions est explcrke pour un rapport de forme unit& L’existence de plus d’une solution 
est trouvie lorsque la paroi inftrieure est ii une tempkrature klevte et B une position horizontale ou proche 

de I’horizontale. 

NUMERISCHE BERECHNUNG DER NATiiRLICHEN KONVEKTION IN EINEM 
RECHTECKIGEN GENEIGTEN PORBSEN MATERIAL 

Zusammenfassung-Die zweidimensionale natiirliche Konvektionsstromung in einem geneigten recht- 
eckigen. mit Fliissigkeit gesgttigten por(isen Material wird numerisch berechnet, indem die Bilanzgleich- 
ungen fiir Masse, Impuls und Energie mit Hilfe des Darcy-Gesetzes und der Boussinesq-Approximation 
gel&t werden. Isotherme Randbedingungen werden betrachtet, wobei zwei gegeniiberliegende Seiten auf 
konstanten, jedoch verschiedenen Temperaturen gehalten werden, wahrend die beiden anderen Seiten 
wgrmegedlmmt sind. Die betrachteten externen Parameter sind der Neigungswinkel, das Seitenverhlltnis 
und die Darcy-Rayleigh-Zahl. Drei konvektive HauptzustCnde werden gefunden : Leitung, Einzell- und 
Vielzellkonvektion ; ihre Eigenschaften werden detailliert beschrieben. &tliche und globale Nusselt-Zahlen 
werden als Funktion der externen Parameter dargestellt. Die Anzahl der Liisungen wird fiir ein Seiten- 
verhaltnis von eins untersucht. Liegt bei horizontaler oder nahezu horizontaler Lage die Boden- 

temperatur iiber den Wandtemperaturen. so existiert mehr als eine Liisung. 

‘IMCJIEHHOE MCCJIEflOBAHME ECTECTBEHHOn KOHBEKqMM B I-IOPMCTOR CPEAE, 
3ArIOJIHflIOuEti HAKJIOHHYIO nOJIOCTb IIPRMOYI-OJIbHOl-0 CE4EHMII 

AmoTauwa-Ha OCHOBe ypaBHeHIlkCOXpaHeHHI7 MaCCbI,IIMITynbCa H 3HeprPiHCRCLIOJIb3OBaHHeM 3aKOHa 

flapcci A npa6nex(eHan IjyccuHecKa 4Ucnemio aaana3apyercn nayMepiian ecTecTaemiaR KoHaeKmis 
)KRLIKOCTA B IIOpHCTOii C~ne,HaXOLUIIUefICSI B HaKnOHHOii IIOnOCTA IIpSIMOyrO,IbHOrO CeqeHH%PaCCMaT- 

pHBaIOTC,I H3OTepMH’,cCKHe rpaHHqHbIe yCnOBHa, npH KOTOpbIX LIB‘? IIpOTI(BOIlOnOEHbIe CTeHKA WMeH)T 
I,OCTOflHHyIO, HO ,,a3JIWIHyH, TeMuepaTypy, a RBe LIpyrHX IIBJIIIIOTCII Tc~JIOH30nHpOBaHHE,1MH. O,Ipe- 

nenmoumm napaMeTpaMn cwTaIoTcK yron HaKnoHa, OTHOUleHAc LIIHpRHbI K TOJIIUllHe II 'IHCnO 

flapCH-PWIe,,. 06Hapy)KeHbI Tpk, OCHOBHbIX PeXGIMa: TeunOupOBOAHOCT1(, OnHOR'IeHCTOfi KOHBeKI,BB, 

MHOrOK'IcACTOfI KOHBeKI,HI(. nOnpO6HO paCCMOTpeHb1 XapaKTepkiCTBKEi yKa3aHHbIX peXGiMOB. nOny- 

qeubI 3aBkicHMocTH noKanbHor0 A ee-rerpanbeoro wcen HyccenbTa 0~ onpcnennlomnx napahlerpoa. 

kiCCJIcnycTCK c,UHCTBeHHOCTb PeIIIeHIiK IIpIi OTHOUleHRR llIllpUHk.~ K TOnUWHc, paBHOM CLIHHIiue. EcnH 
HA~H~IK cTeHKa sanseTca 6onee ropsqeii u HaxonHTcK B ropIi30wranbHoM Ami 6nH3KOM K HeMy nono- 

X(eHIiH,TO OKa3bIBaeTCR,YTO peLIIcH&ie ypaBHeHItii He RBJIReTCReJWiHCTBeHHbIM. 


